Modeling Naturalistic Driver Behavior in Traffic Using Machine Learning

نویسنده

  • Linsen Chong
چکیده

This research is focused on driver behavior in traffic, especially during car-following situations and safety critical events. Driving behavior is considered as a human decision process in this research which provides opportunities for an artificial driver agent simulator to learn according to naturalistic driving data. This thesis presents two mechine learning methodologies that can be applied to simulate driver naturalistic driving behavior including risk-taking behavior during an incident and lateral evasive behavior which have not yet been captured in existing literature. Two special machine learning approaches Backpropagation (BP) neural network and Neuro-Fuzzy Actor Critic Reinforcement Learning (NFACRL) are proposed to model driver behavior during carfollowing situation and safety critical events separately. In addition to that, as part of the research, state-of-the-art car-following models are also analyzed and compared to BP neural network approach. Also, driver heterogeneity analyzed by NFACRL method is discussed. Finally, it presents the findings and limitations drawn from each of the specific issues, along with recommendations for further research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Agent-based Reinforcement Learning Model for Simulating Driver Heterogeneous Behavior during Safety Critical Events in Traffic

Driving behavior in traffic has been modeled quite successfully in simulation software using predefined car-following models rules. However, because most car-following models assume that vehicles could keep a safety distance away to avoid crash related conflicts; they are not capable to capture naturalistic driving behavior during safety-critical events. Also, vehicle detailed lateral maneuveri...

متن کامل

Driver Car-following Behavior Simulation using Fuzzy Rule-based Neural Network

This paper proposes a rule-based car-following model to simulate the driver decision process and model the associated vehicle longitudinal action in the car-following regime. In order to analyze individual driver characteristics and extract driving behavior rules, a fuzzy rule based neural network is constructed with the objective of presenting driver action rules under the associated traffic s...

متن کامل

Developing a Model of Heterogeneity in Driver’s Behavior

Intelligent Driver Model (IDM) is a well-known microscopic model of traffic flow within the traffic engineering societies. While it is a powerful technique for modeling traffic flows, the Intelligent Driver Model lacks the potential of accommodating the notion of drivers’ heterogeneous behavior whenever they are on roads. Concerning the above mentioned, this paper takes the lane to recognize th...

متن کامل

MANFIS Based Modeling and Prediction of the Driver-Vehicle Unit Behavior in Overtaking Scenarios

Overtaking a slow lead vehicle is a complex maneuver because of the variety of overtaking conditions and driver behavior. In this study, two novel prediction models for overtaking behavior are proposed. These models are derived based on multi-input multi-output adaptive neuro-fuzzy inference system (MANFIS). They are validated at microscopic level and are able to simulate and predict the fut...

متن کامل

Using the Reaction Delay as the Driver Effects in the Development of Car-Following Models

Car-following models, as the most popular microscopic traffic flow modeling, is increasingly being used by transportation experts to evaluate new Intelligent Transportation System (ITS) applications. A number of factors including individual differences of age, gender, and risk-taking behavior, have been found to influence car-following behavior. This paper presents a novel idea to calculate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011